ЛЕКЦИЯ № 8

Рассеяние частиц в лабораторной системе отсчета.

В гостях хорошо, а дома – лучше.

Пословица

До сих пор мы рассматривали динамику двух тел в системе отсчета, связанной с центром инерции системы, как движение частицы с приведенной массой в поле неподвижного центра. Реально эксперименты по рассеянию частиц проводятся в лабораторной системе отсчета, и требуется пересчет результатов, полученных в системе центра инерции в эту систему. В принципе, это можно сделать, исходя из известных выражений для траектории в системе центра инерции. Но их можно получить только при известном виде потенциала взаимодействия. Однако, как было показано выше, в теории рассеяния не требуется знания конкретной траектории движения частиц при всех временах, а требуется знание только асимптотик движения при $t \to \infty$ и $t \to \infty$. Эту задачу можно решить в общем виде, использую законы сохранения интегралов движения.

Постановка задачи заключается в следующем: две частицы с массами m_1 и m_2 имею при $t \to -\infty$ скорости \vec{v}_1 и \vec{v}_2 . Поскольку координаты частиц не конкретизируются, то это – задача с неполной информацией. (Раньше мы видели, что частоты с одинаковыми скоростями V_{∞} , но разными прицельными расстояниями, т.е. координатами, рассеиваются на разные углы). Что можно сказать о скоростях частиц \vec{v}_1' и \vec{v}_2' после их взаимодействия при $t \to +\infty$? Этот процесс изображен на Рис.23.

Рис.23

До столкновения частицы со скоростями \vec{v}_1 и \vec{v}_2 и импульсами $\vec{p}_1 = m_1 \vec{v}_1$ и $\vec{p}_2 = m_2 \vec{v}_2$ имели полную энергию $E = m_1 v_1^2 / 2 + m_2 v_2^2 / 2$ и полный импульс $\vec{P} = m_1 \vec{v}_1 + m_2 \vec{v}_2$. Центр инерции двигался со скоростью $\vec{V} = \vec{P}/(m_1 + m_2)$. После взаимодействия скорости и импульсы частиц принимают значения \vec{v}_1' , \vec{v}_2' , $\vec{p}_1' = m_1 \vec{v}_1'$ и $\vec{p}_2' = m_2 \vec{v}_2'$, энергия $E' = m_1 {v_1'}^2 / 2 + m_2 {v_2'}^2 / 2 = E$ и импульс $\vec{P}' = m_1 \vec{v}_1' + m_2 \vec{v}_2' = \vec{P}$ сохраняются. Переход до взаимодействия в систему, связанную с центром инерции (СЦИ), и обратный переход в лабораторную систему (ЛС) после взаимодействия изображены на Рис.24. Опишем их.

До взаимодействия ($t \to -\infty$) при переходе в СЦИ $\vec{v}_1^0 = \vec{v}_1 - \vec{V}$ и $\vec{v}_2^0 = \vec{v}_2 - \vec{V}$, а относительная скорость не меняется $\vec{v}^0 = \vec{v}$. В СЦИ скорости частиц выражаются через относительную скорость согласно формулам (см. Лекцию N_2)

$$\vec{v}_1^0 = \frac{m_2}{m_1 + m_2} \vec{v}^0 = \frac{m_2}{m_1 + m_2} \vec{v}, \quad \vec{v}_2^0 = -\frac{m_1}{m_1 + m_2} \vec{v}.$$
 (8.1)

Т.е. скорости антиколлинеарны и параллельны й. Из (8.1) следует, что

$$\vec{p}_1^0 = -\vec{p}_2^0 = m\vec{v}\,,\tag{8.2}$$

где $m = m_1 m_2 / (m_1 + m_2)$ — приведенная масса. Энергия в СЦИ $E^0 = m_1 v_1^{02} / 2 + m_2 v_2^{02} / 2 = m v^2 / 2$ при взаимодействии сохраняется. Следовательно, после взаимодействия относительная скорость сохраняет свою величину v, но меняет направление и направлена при $t \to \infty$ вдоль некого единичного вектора \vec{n}_0 : $\vec{v}' = v \vec{n}_0$. Направление \vec{n}_0 в сформулированной постановке задачи не фиксировано (задача с неполной информацией) и определяется начальными координатами частиц до рассеяния. Скорости частиц после взаимодействия в СЦИ определяются формулами

$$\vec{v}_1^{\prime 0} = \frac{m_2}{m_1 + m_2} v \vec{n}_0, \quad \vec{v}_2^{\prime 0} = -\frac{m_1}{m_1 + m_2} v \vec{n}_0.$$
 (8.3)

Окончательное возвращение в ЛС проводится добавлением к этим скоростям скорости центра инерции \vec{V} .Учитывая ее величину, находим окончательную связь скоростей частиц до и после взаимодействия:

$$\vec{v}_1' = \frac{m_2}{m_1 + m_2} |\vec{v}_1 - \vec{v}_2| \vec{n}_0 + \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2}, \quad \vec{v}_2' = -\frac{m_1}{m_1 + m_2} |\vec{v}_1 - \vec{v}_2| \vec{n}_0 + \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2}.$$
(8.4)

Поскольку в задаче рассеяния нас интересуют углы рассеяния, то удобно переписать соотношения (8.4) в виде

$$\vec{p}_1' = mv\vec{n}_0 + \frac{m_1}{m_1 + m_2} (\vec{p}_1 + \vec{p}_2), \qquad \vec{p}_2' = -mv\vec{n}_0 + \frac{m_2}{m_1 + m_2} (\vec{p}_1 + \vec{p}_2), \qquad (8.5)$$

и изобразить следующую наглядную диаграмму для импульсов после рассеяния в ЛС (Рис.25). На этом графике отрезки *AO* и *OB* равны, соответственно, $\vec{AO} = m_1 \vec{P} / (m_1 + m_2)$ и $\vec{OB} = m_2 \vec{P} / (m_1 + m_2)$, и в сумме $\vec{AB} = \vec{P}$.

Чтобы продвинуться дальше в задаче рассеяния, рассмотрим частный случай, когда при $t \to -\infty$ частица с массой m_2 покоилась. При этом Рис.24 преобразуется в Рис.27,

Рис.27

и во всех формулах надо положить $\vec{v}_2 = 0$, $\vec{p}_2 = 0$, $\vec{v} = \vec{v}_1$, $\vec{V} = m_1 \vec{v}_1 / (m_1 + m_2)$, $\vec{P} = \vec{p}_1$, OB = OC = mv, $AO = mv(m_1/m_2)$. Рис.25 модифицируется и приобретает вид, изображенный на Рис.26. Из рисунка видно, что поскольку $\vec{P} \parallel \vec{p}_1^0$ и $\vec{n}_0 \parallel \vec{p}_1'^0$ (см. Рис.27), то угол χ есть угол рассеяния в СЦИ, который обсуждался в предыдущих лекциях. С другой стороны, поскольку $\vec{P} \parallel \vec{p}_1$ (см. Рис.27), то углы \mathcal{G}_1 и \mathcal{G}_2 соответствуют углу рассеяния налетающей частицы и углу отдачи покоящейся частицы в ЛС, т.е. углы, измеряемые в эксперименте. Поскольку треугольник *ОВС* равнобедренный, то $\chi/2 + \vartheta_2 = \pi/2$ или

$$\mathcal{P}_2(\chi) = \frac{\pi - \chi}{2}. \tag{8.6}$$

Из Рис.26 видно, что $(AO + OC \cdot \cos \chi)tg \vartheta_1 = OC \cdot \sin \chi$, откуда для угла рассеяния в ЛС получаем

$$tg \mathcal{G}_1(\chi) = \frac{m_2 \sin \chi}{m_1 + m_2 \cos \chi}.$$
(8.7)

В двух предельных случаях эти соотношения упрощаются.

При массе налетающей частицы, много меньшей массы мишени $m_1 \ll m_2$ имеем $\mathcal{G}_2 \approx \chi$, и все результаты, полученные для налетающей частицы в СЦИ переносятся в ЛС. Но формула (8.6) при этом дает угол отдачи тяжелой мишени. Этот предел соответствует Рис.28.

Из Рис.28 видно, что при $m_2 > m_1$ возможно как рассеяние налетающей частицы как «вперед» (а), так и «назад» (b). Но вначале покоящаяся частица, естественно, отталкивается вперед. При малоугловом рассеянии, когда $g_1 \rightarrow 0$, вторая частица испытывает отдачу под почти прямым углом. На Рис.29 приведена картина рассеяния двух частиц с одинаковыми массами $m_1 = m_2$. В этом случае соотношение (8.7) упрощается и сводится к такому

$$\mathcal{G}_1 = \frac{\chi}{2}.\tag{8.8}$$

Из Рис.29 видно, что в этом случае после взаимодействия частицы разлетаются под прямым углом. (В частности, при соударении биллиардные шары всегда разлетаются под прямым углом). Наконец, при $m_1 > m_2$ (Рис.30) после столкновения налетающая частица всегда рассеивается по

направлению движения. При этом существует максимальный угол рассеивания $\mathcal{G}_{1 \max}$ такой, что $\sin \mathcal{G}_{1 \max} = m_2 / m_1$.

Соотношения (8.6-8.8), представленные в виде $\chi = \chi(\vartheta_1)$ и $\chi = \chi(\vartheta_2)$, позволяют найти дифференциальные сечения рассеяния для падающих и рассеивающих частиц по формуле $d\sigma = F(\chi)d\chi$ в СЦИ: $d\sigma_i = F(\chi(\vartheta_i))(d\chi/d\vartheta_i)d\vartheta_i$. В частности, для кулоновского потенциала из формулы Резерфорда для дифференциального сечения рассеяния в СЦИ (7.7)

$$d\sigma = \pi \left(\frac{\alpha}{mV_{\infty}^{2}}\right)^{2} \frac{\cos(\chi/2)}{\sin^{3}(\chi/2)} d\chi$$
(8.9)

$$\text{имеем} \qquad d\sigma_2 = 2\pi \left(\frac{\alpha}{mV_{\infty}^2}\right)^2 \frac{\sin \theta_2}{\cos^3 \theta_2} d\theta_2, \qquad d\sigma_1 \approx \pi \left(\frac{\alpha}{mV_{\infty}^2}\right)^2 \frac{\cos(\theta_1/2)}{\sin^3(\theta_1/2)} d\theta_1. \tag{8.10}$$

Графики этих зависимостей для $d\sigma_1$ и $d\sigma_2$ приведены на Рис.31 в виде кривых 1 и 2, соответственно.

Во втором интересном случае равных масс $m_1 = m_2 = m_0$ формулы для сечений рассеяния имеют вид

$$d\sigma_2 = 8\pi \left(\frac{\alpha}{m_0 V_{\infty}^2}\right)^2 \frac{\sin \theta_2}{\cos^3 \theta_2} d\theta_2, \quad d\sigma_1 = 8\pi \left(\frac{\alpha}{m_0 V_{\infty}^2}\right)^2 \frac{\cos \theta_1}{\sin^3 \theta_1} d\theta_1.$$
(8.11)

Соответствующие графики приведены на Рис.32. Точка $\pi/2$ отвечает «лобовому» столкновения, при котором налетающая частица останавливается после столкновения. Графики симметричны относительно замены $g_2 = \pi/2 - g_1$. Если покоящиеся и налетающие частицы неразличимы, то полное сечение рассеяние есть сумма двух сечений (красная линия 3 на Рис.32).